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Abstract
Auxiliary systems for matrix nonisospectral equations, including coupled NLS
with external potential and KdV with variable coefficients, were introduced.
Explicit (up to the inversion of finite matrices) solutions of nonisospectral
equations were constructed using the GBDT version of the Bäcklund–Darboux
transformation.

PACS numbers: 02.30.Ik, 02.30.Yy, 03.65.Ge

1. Introduction

The nonisospectral method to generate solvable nonlinear evolution equations was proposed
in the seminal paper [6] and actively used in a wide range of papers (see, for instance, various
references in the recent papers [22, 38, 39]). In particular, this approach allows us to generate
physically interesting nonlinear equations with external potentials [7, 8]. Such equations are
used to describe deep water and plasma waves, waves in non-uniform media, light pulses and
energy transport (see [10, 35, 38] and references therein).

In the paper we assume that the spectral parameter λ depends on both variables x and
t. Important results for this case were obtained by Burtsev, Zakharov and Mikhailov in [5]
(see also interesting papers [3, 4, 21]). Interesting deformations of the KdV, MKdV and
nonlinear Schrödinger equations were constructed in [5]. Physically important nonisospectral
deformations of the Maxwell–Bloch system were constructed and studied in [3–5] too. A
general dressing method for the case of ‘moving poles’ was proposed in [5]. In particular, the
so-called polynomial case

λx = p0 + p1λ + · · · + pkλ
k, λt = p̃0 + p̃1λ + · · · + p̃lλ

l, 1 � k � l (1.1)

was treated there.
In our paper we consider in detail the polynomial case, where k = 0. It proves that this

case deserves a separate consideration: we construct some solvable generalizations of the
matrix versions of the coupled nonlinear Schrödinger (CNLS), KdV and MKdV equations.
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Matrix versions are of interest (see, for instance, [9]) and include, in particular, scalar cases
and multi-component cases. We construct auxiliary linear systems for our matrix (and scalar)
cases and some equations seem to be new in the scalar cases too.

Afterwards we apply to the constructed equations GBDT, which is a version of the
Bäcklund–Darboux transformation developed by the authors in [24–32]. The Bäcklund–
Darboux transformation is a well-known and fruitful tool to construct explicit solutions of the
integrable equations and some classical linear equations as well. Some important versions
of the Bäcklund–Darboux transformation one can find in [11, 12, 15, 17, 19, 20, 37]. The
GBDT version of the iterated Bäcklund–Darboux transformation is of rather general nature
and provides simple algebraic formulae based on some system theoretical and matrix identity
results. The parameter matrices, which are used in GBDT, have an arbitrary Jordan structure,
while diagonal matrices (with eigenvalues of the auxiliary spectral problems as the entries)
are mostly used in other approaches.

Examples are considered in a more detailed way.

2. Nonisospectral equations

2.1. NLS with external potential

Recall the coupled nonlinear Schrödinger equation (CNLS) of the form [14]:

v1t + iv1xx + 2iv1v2v1 = 0, v2t − iv2xx − 2iv2v1v2 = 0

(
vt := ∂

∂t
v

)
. (2.1)

We shall consider the matrix version of (2.1), where v1 and v2 are m1 × m2 and m2 × m1

(m1,m2 � 1) matrix functions, respectively. Auxiliary linear systems for CNLS are given by
the formulae

wx(x, t, λ) = G(x, t, λ)w(x, t, λ), wt (x, t, λ) = F(x, t, λ)w(x, t, λ). (2.2)

Here we have

G = −(λq1 + q0), F = −(λ2Q2 + λQ1 + Q0), (2.3)

where λ is the independent of x and t spectral parameter,

2q1 = −Q2 = 2ij, 2q0(x, t) = −Q1(x, t) = 2jξ(x, t), (2.4)

Q0(x, t) = i(jξ(x, t)2 − ξx(x, t)), (2.5)

j =
[
Im1 0
0 −Im2

]
, ξ =

[
0 v1

v2 0

]
, (2.6)

and Ik is the k × k identity matrix. We assume in this section that G and F are continuous
together with their first derivatives. Then the compatibility condition for systems (2.2) can be
written in the zero-curvature equation form:

Gt(x, t, λ) − Fx(x, t, λ) + G(x, t, λ)F (x, t, λ) − F(x, t, λ)G(x, t, λ) = 0. (2.7)

It can be checked directly that (2.1) is equivalent to the compatibility condition (2.7). In other
words, equation (2.1) can be presented in the zero-curvature form (2.7). (See [13] on the
historical details about zero-curvature representation of the integrable equations.) It follows
from (2.7) that (2.1) can be presented in the form:

−j (ξt (x, t) + ijξxx(x, t) + 2ijξ(x, t)3) = 0. (2.8)

Indeed, the left-hand side of (2.8) coincides with the left-hand side of (2.7), while the
coefficients at the degrees λk (k > 0) on the left-hand side of (2.7) turn to zero. It is
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easy to calculate that in the nonisospectral case (for λ depending on x and t) the zero-curvature
equation (2.7) is equivalent to

−λtq1 + 2λxλQ2 + λxQ1 − j (ξt (x, t) + ijξxx(x, t) + 2ijξ(x, t)3) = 0. (2.9)

Assume now

λt = −4λxλ, (2.10)

to derive from (2.4), (2.9) and (2.10)

(ξt (x, t) + ijξxx(x, t) + 2ijξ(x, t)3) + 2λxξ(x, t) = 0. (2.11)

Thus we obtain the following proposition.

Proposition 2.1. The CNLS with external potential

v1t + iv1xx + 2iv1v2v1 + 2λxv1 = 0, v2t − iv2xx − 2iv2v1v2 + 2λxv2 = 0 (2.12)

is a nonisospectral integrable equation, in which auxiliary linear systems are given by
(2.2)–(2.6), where λt = −4λxλ. In other words, equation (2.12) admits zero-curvature
representation (2.7), where G and F are given by (2.3)–(2.6) and λt = −4λxλ.

Remark 2.2. The simplest solution of (2.11) is given by the function

λ(x, t) = 1
4 (x + c)(t + b)−1, (2.13)

where c is the ‘hidden spectral parameter’ in the terminology of [5]. Correspondingly, we
obtain an integrable coupled nonlinear Schrödinger equation with a simple external potential

v1t + iv1xx + 2iv1v2v1 +
1

2(t + b)
v1 = 0, v2t − iv2xx − 2iv2v1v2 +

1

2(t + b)
v2 = 0.

(2.14)

The problem of similarity transformations [18, 23] is of interest here. When b = b, using
λ(x, t) as in (2.13) one can construct an integrable nonlinear Schrödinger equation (NLS) with
external potential [31], however the substitution

t = −b − t̃−1, x = −x̃̃t−1 (2.15)

turns it (see [23], section 6, example 4) into the classical cubic NLS. In a quite similar way
substitution (2.15) and equalities

ṽ1 = (t + b) exp

(
ix2

4(t + b)

)
v1, ṽ2 = (t + b) exp

(
− ix2

4(t + b)

)
v2 (2.16)

transform (2.14) in the case b = b into the CNLS

ṽ1̃t + ĩv1̃xx̃ + 2ĩv1̃v2̃v1 = 0, ṽ2̃t − ĩv2̃xx̃ − 2ĩv2̃v1̃v2 = 0. (2.17)

The case b �= b is more interesting from that point of view, though GBDT for equation (2.14)
(b = b) can be applied to construct new solutions of (2.1) and proves therefore useful too.
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2.2. KdV equation with variable coefficients

The matrix KdV equation can be written as

vt (x, t) − 3v(x, t)vx(x, t) − 3vx(x, t)v(x, t) + vxxx(x, t) = 0, (2.18)

where v is a p×p matrix function. Equation (2.18) admits zero-curvature representation (2.7),
where polynomials G and F of form (2.3) are defined via the m × m (m = 2p) coefficients

q1 =
[

0 0
Ip 0

]
, q0 = −

[
0 Ip

v 0

]
, (2.19)

Q2 =
[

0 0
4Ip 0

]
, Q1 = −

[
0 4Ip

2v 0

]
, Q0 =

[
vx −2v

vxx − 2v2 −vx

]
. (2.20)

Now, substitute (2.20) by the equalities

Q2 = g(t)

[
0 0
4Ip 0

]
, Q1 = −g(t)

[
0 4Ip

2v 0

]
,

Q0 = g(t)

([
vx −2v

vxx − 2v2 −vx

]
+ 2f (t)j

)
, j =

[
Ip 0
0 −Ip

]
,

(2.21)

where g and f are scalar functions. One can easily take into account corresponding changes
in (2.7) and obtain our next proposition.

Proposition 2.3. (a) Assume λ = xf (t)+h(t). Then equation (2.7), where G and F are defined
via (2.19) and (2.21), is a zero-curvature representation of KdV with variable coefficients and
external potential:

vt + g(t)(vxxx − 3vvx − 3vxv − 6f v) = (x(ft − 12gf 2) + ht − 12fgh)Ip. (2.22)

(b) Assume

λx = f, λt = 12fgλ, ft = 12gf 2. (2.23)

Then equation (2.7), where G and F are defined via (2.19) and (2.21), is a zero-curvature
representation of a special case of equation (2.22):

vt + g(t)(vxxx − 3vvx − 3vxv − 6f v) = 0. (2.24)

Note that equation (2.22), where p = 1 (scalar case) and h = 0, was treated using the
homogeneous balance principle in [36]. When (2.23) holds and g = 1, one can put
f = −(t + b)−1/12. The corresponding equation

vt + vxxx − 3vvx − 3vxv +
1

2(t + b)
v = 0

appeared in [1] and its subcase b = 0 is a well-known cylindrical KdV [7].

2.3. MKdV with external potential

Introduce G and F by the equalities

G = iλj + ξB, F = −iλ3j − λ2ξB − iλ

2
(ξxBj + (ξB)2)

+
1

4
(ξxxB − (−1)k(2ξ 3B + ξxξ − ξξx)) +

i

2
∂−1
x (λx(ξB)2), (2.25)
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where j is given in (2.6), B = jk (k = 0, 1), λ = λ = √
(x + c)/3(t + b), and

ξ =
[

0 −v∗

v 0

]
. (2.26)

Then representation (2.7) is equivalent to the equation

4vt = vxxx + 3(−1)k(vxv
∗v + vv∗vx) − 4

3(t + b)
v − 2if vx

+ 2(−1)k i
(
v∂−1

x (f v∗v) − ∂−1
x (f vv∗)v

)
,

f (x, t) = (2
√

3(x + c)(t + b))−1. (2.27)

Some other generalizations of MKdV one can find in [2, 38].

3. GBDT for the nonisospectral case: preliminaries

GBDT (nonisospectral case) for systems with rational dependence on the spectral parameter
has been introduced in [25]. Here we shall need a reduction of the theorem in [25] (section 2,
p 1253) for the first-order systems of the form

w′(u, λ) = G(u, λ)w(u, λ)

(
w′ = d

du
w

)
, G(u, λ) = −

r∑
k=0

λkQk(u), (3.1)

where the coefficients Qk(u) are m×m locally summable on the interval (−c1, c2)(c1, c2 � 0)

matrix functions. It was assumed in [25] that the derivative of λ = λ(u) rationally depends on
λ, but now it will suffice to suppose a polynomial dependence:

λ′(u) =
r∑

k=0

ωk(u)λ(u)k. (3.2)

After fixing an integer n > 0 the GBDT of the system (3.1) is determined by the five parameter
matrices: three n × n matrices A1(0), A2(0) and S(0) (det S(0) �= 0) and two n × m matrices
�1(0) and �2(0), such that

A1(0)S(0) − S(0)A2(0) = �1(0)�2(0)∗. (3.3)

Next, introduce the matrix functions A1(u), A2(u),�1(u),�2(u) and S(u) with the given
above values at u = 0 by the differential equations

A′
l (u) =

r∑
k=0

ωk(u)Al(u)k (l = 1, 2), (3.4)

�′
1(u) =

r∑
k=0

A1(u)k�1(u)Qk(u), �′
2(u) = −

r∑
k=0

(A2(u)∗)k�2(u)Qk(u)∗, (3.5)

S ′(u) =
r∑

k=1

k∑
j=1

A1(u)k−j (�1(u)Qk(u)�2(u)∗ − ωk(u)S(u))A2(u)j−1. (3.6)

Note that equations (3.4)–(3.6) are chosen in such a way that the identity

A1(u)S(u) − S(u)A2(u) = �1(u)�2(u)∗ (3.7)

follows from (3.3) for all u in the connected domain, where the coefficients Qk are defined.
(The relation is obtained by the direct differentiation of both sides of (3.7).) Assuming that
det S(u) �= 0 and det(A1(u) − λ(u)In) �= 0 we define a transfer matrix function

wA(u, λ) = Im − �∗
2S

−1(A1 − λIn)
−1�1. (3.8)

5
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Remark 3.1. Following the notation in the isospectral case we write wA(u, λ), but as λ = λ(u),
so one can write simply wA(u).

Transfer matrix functions of the form

wA(λ) = IL − �∗
2S

−1(A1 − λIH)−1�1 (A1S − SA2 = �1�
∗
2),

where IL and IH are the identity matrices in the Hilbert spaces L and H, respectively, have been
introduced and studied by L Sakhnovich in the context of his method of operator identities (see
[33, 34] and references in [34]) and take roots in the Livšic characteristic matrix functions.
Our next theorem is a reduction of the theorem from [25].

Theorem 3.2. Let relations (3.2) and (3.3) hold. Define matrix functions A1, A2,�1,�2 and
S by the equalities (3.4)–(3.6). Then in the points of invertibility of the matrix functions S(u)

and A1(u) − λ(u)In the equation

w′
A(u, λ) = Ĝ(u, λ)wA(u, λ) − wA(u, λ)G(u, λ), Ĝ(u, λ) = −

r∑
k=0

λ(u)kQ̂k(u) (3.9)

is true, and the coefficients Q̂k are given by the formulae

Q̂k = Qk −
r∑

j=k+1

(
QjYj−k−1 − Xj−k−1Qj +

j∑
s=k+2

Xj−sQjYs−k−2

)

+
r∑

j=k+2

ωj

j∑
s=k+2

Zj−s,s−k−2, (3.10)

where

Xk = �∗
2S

−1Ak
1�1, Yk = �∗

2A
k
2S

−1�1, (3.11)

Zk,j = �∗
2S

−1Ak
1SA

j

2S
−1�1. (3.12)

Remark 3.3. According to theorem 3.2 the matrix function wA is a Darboux matrix, which
transforms solution w of system (3.1) into solution ŵ = wAw of the system ŵ′ = Ĝŵ.

Finally, we shall need also formula (9) from [25]:

(�∗
2S

−1)′ = −
r∑

k=0

Q̆k�
∗
2S

−1Ak
1, Q̆k := Q̂k − (k + 1)ωk+1Im (ωr+1 = 0). (3.13)

4. Solutions of equations with external potentials

In this section we shall construct GBDT solutions for the CNLS equation (2.14) and for the
KdV-type equation (2.24). First, let v1 and v2 satisfy (2.14). This means that the zero-curvature
equation (2.7), where G and F are defined by (2.3)–(2.6) and

λx = f (t), λt = −4f (t)λ
(
f (t) = 1

4 (t + b)−1
)
, (4.1)

holds. Now, put m = m1 + m2 and apply GBDT from section 3 for systems (2.2). Putting
u = x and using the notations of (3.2), we derive from (2.3) and (4.1) that r = 1, ω1 = 0,

ω0(x) ≡ const, i.e., ω0(x, t) = f (t), where t is a second variable. Putting u = t , we

6
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derive r = 2, ω2 = ω0 = 0, ω1(t) = −4f (t). Hence, formula (3.4) for A = A1, A2 after
substitutions u = x and u = t takes the form

Ax = f (t)In, At = −4f (t)A. (4.2)

Therefore we can put

A1(x, t) = f (t)(xIn + a1), A2(x, t) = f (t)(xIn + a2), (4.3)

where a1 and a2 are some arbitrary n × n matrices. We require (compare with (3.3)):

A1(0, 0)S(0, 0) − S(0, 0)A2(0, 0) = �1(0, 0)�2(0, 0)∗. (4.4)

Next, we introduce the matrix functions �1(x, t) and �2(x, t), where the dependence on x is
determined by the system wx = Gw, that is, by the coefficients of G, and the dependence on
t is determined by the system wt = Fw. Namely, when we put u = x, the system for �1 in
(3.5) takes the form

(�1(x, t))x = A1(x, t)�1(x, t)q1 + �1(x, t)q0(x, t), (4.5)

and when we put u = t , the system takes the form

(�1(x, t))t = A1(x, t)2�1(x, t)Q2 + A1(x, t)�1(x, t)Q1(x, t) + �1(x, t)Q0(x, t). (4.6)

The compatibility of systems (4.5) and (4.6) follows from (2.7). In a similar way we rewrite
the second equation in (3.5):

(�2)x = −
1∑

k=0

(A∗
2)

k�2q
∗
k , (�2)t = −

2∑
k=0

(A∗
2)

k�2Q
∗
k. (4.7)

Recall now relations

ω1 = 0, ω0 = f (t), when u = x;
(4.8)

ω2 = ω0 = 0, ω1 = −4f (t), when u = t.

In view of (4.8) we rewrite (3.6) as

Sx = �1q1�
∗
2, St = �1Q1�

∗
2 + A1�1Q2�

∗
2 + �1Q2�

∗
2A2 + 4f (t)S. (4.9)

According to (4.3)–(4.7) and (4.9) the matrix identity

A1S − SA2 ≡ �1�
∗
2 (4.10)

is true. Finally, using (3.10) and equality X0 = Y0, define coefficients q̂k(x, t) and Q̂k(x, t):

q̂1 = q1, q̂0 = q0 + X0q1 − q1X0,
(4.11)

Q̂2 = Q2, Q̂1 = Q1 + X0Q2 − Q2X0,

Q̂0 = Q0 + X0Q1 − Q1X0 + X1Q2 − Q2Y1 − X0Q2X0. (4.12)

Partition matrix functions �l (l = 1, 2): �1 = [�1 �2] and �2 = [�1 �2], where �1, �1 are
n × m1 blocks, and �2, �2 are n × m2 blocks. From theorem 3.2 and remark 3.3 proposition
follows.

Proposition 4.1. Let v1 and v2 satisfy CNLS (2.14) with external potential. Then, in the points
of invertibility of S and A1 − λIn, the matrix functions

v̂1 = v1 − 2i�∗
1 S−1�2, v̂2 = v2 − 2i�∗

2 S−1�1 (4.13)

also satisfy equation (2.14).

7
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Proof. Equations (3.8), (4.3)–(4.7) and (4.9) define the transfer matrix function wA(x, t, λ).
By remark 3.3 for ŵ = wAw we have ŵx = Ĝŵ and ŵt = F̂ ŵ, and so these two systems are
compatible. That is, the compatibility condition

Ĝt − F̂x + ĜF̂ − F̂ Ĝ = 0 (4.14)

holds. Recall that formulae (2.3)–(2.6) imply the equivalence of the compatibility condition
(2.7) to equation (2.14). Taking into account (4.13), put

ξ̂ =
[

0 v̂1

v̂2 0

]
= ξ + i(jX0j − X0). (4.15)

When equalities (2.4) and (2.5) remain valid after substitution of the matrix functions
{qk}, {Qk} and ξ by the matrix functions {̂qk}, {Q̂k} and ξ̂ , respectively, then Ĝ and F̂ have the
same structure as G and F . Therefore, similar to (2.7) equation (4.14) is equivalent to (2.14),
that is, v̂1 and v̂2 satisfy (2.14). According to (4.11) we have

q̂1 = q1, Q̂2 = Q2. (4.16)

From (4.11) it also follows that

2̂q0 = −Q̂1 = 2(jξ − ijX0 + iX0j) = 2j (ξ + i(jX0j − X0)). (4.17)

Substitute (4.15) into (4.17) to get the relation similar to the second relation in (2.4):

2̂q0 = −Q̂1 = 2j ξ̂ . (4.18)

It remains to prove that

Q̂0(x, t) = i(j ξ̂ (x, t)2 − ξ̂x(x, t)). (4.19)

By (2.4), (2.5) and (4.12) we obtain

Q̂0 = i(jξ 2 − ξx) + 2jξX0 − 2X0jξ + 2ijY1 − 2iX1j + 2iX0jX0. (4.20)

According to (4.10) we have A2S
−1 = S−1A1 − S−1�1�

∗
2S

−1. Therefore, in view of (3.11),
it follows that

Y1 = �∗
2(S

−1A1 − S−1�1�
∗
2S

−1)�1 = X1 − X2
0. (4.21)

Using (4.21), we rewrite (4.20) as

Q̂0 = i(jξ 2 − ξx) + 2i(jX1 − X1j) − 2ijX2
0 + 2(jξX0 − X0jξ) + 2iX0jX0. (4.22)

To calculate −îξx note that by (3.11), (3.13), (4.5) and (4.8) we have

(X0)x = −q̂1X1 − q̂0X0 + X1q1 + X0q0. (4.23)

Taking into account (2.4), (4.16) and (4.18), we rewrite (4.23) as(
X0

)
x

= −ijX1 − j ξ̂X0 + iX1j + X0jξ. (4.24)

By (4.15) and (4.24) we obtain

−îξx = −iξx + 2i(jX1 − X1j) − ξ̂X0j + j ξ̂X0 + jX0jξj − X0jξ. (4.25)

Finally, in view of (4.15), (4.22), (4.25) and equality ξj = −jξ , a direct calculation shows
that

Q̂0 + îξx = ij ξ̂ 2. (4.26)

Thus, equality (4.19) follows. �
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Remark 4.2. Note that for the trivial initial solution, that is, for the case v1 = 0 and v2 = 0
the blocks of the matrix functions �1 and �2 are calculated via (4.3) and (4.5)–(4.7) explicitly

�s = (exp(−1)s+1C1(x, t))hs, C1(x, t) = i

2
f (t)(xIn + a1)

2, (4.27)

�s = (exp(−1)s+1C2(x, t))ks, C2(x, t) = i

2
f (t)(xIn + a∗

2)2, (4.28)

where hs and ks are n × ms matrices (s = 1, 2), f (t) = (4(t + b))−1.

Remark 4.3. Taking into account (4.3) we can rewrite (4.10) in the form

a1S(x, t) − S(x, t)a2 = f (t)−1�1(x, t)�2(x, t)∗. (4.29)

Equation (4.29) is a linear algebraic system from which S is easily recovered. Indeed, let a1

and a2 be diagonal matrices

a1 = diag{c1, c2, . . . , cn}, a2 = diag{̃c1, c̃2, . . . , c̃n}, σ (a1) ∩ σ(a2) = ∅, (4.30)

where σ is a spectrum, and put

R(x, t) = {Rkj (x, t)}nk,j=1 = f (t)−1�1(x, t)�2(x, t)∗. (4.31)

Then formulae (4.29) and (4.30) imply

S(x, t) = {Skj (x, t)}nk,j=1, Skj (x, t) = (ck − c̃j )
−1Rkj (x, t). (4.32)

That is, taking into account (4.31), we express the entries of S explicitly via �1 and �2, which
in their turn are constructed explicitly in (4.27) and (4.28). (Recall that �1 = [�1 �2] and
�2 = [�1 �2].)

In the general (non-diagonal) situation we denote the columns of S by Sk and the columns
of R by Rk and introduce vectors

−→
S =

⎡⎣S1

· · ·
Sn

⎤⎦ ,
−→
R =

⎡⎣R1

· · ·
Rn

⎤⎦ . (4.33)

Next, introduce n × n block matrices with the blocks of order n, that is n2 × n2 matrices,

ă1 = diag{a1, a1, . . . , a1}, ă2 = {ajkIn}nk,j=1, (4.34)

where ajk are the entries of a2. Then, (4.29) yields
−→
S = (ă1 − ă2)

−1−→R , (4.35)

and S is immediately recovered from
−→
S . The condition σ(a1) ∩ σ(a2) = ∅ is sufficient for

the invertibility of ă1 − ă2.

Using proposition 4.1 and remarks 4.2 and 4.3, a wide class of solutions of the matrix CNLS
with external potential can be constructed explicitly up to the inversion of finite matrices.

Proposition 4.4. Fix arbitrary n × n matrices a1 and a2 such that σ(a1) ∩ σ(a2) = ∅. Let

matrices �s and �s be given by (4.27) and (4.28). Define
−→
S via (4.31) and (4.33)–(4.35),

and recover S columnwise from
−→
S . Then the matrix functions

v̂1 = −2i�∗
1 S−1�2, v̂2 = −2i�∗

2 S−1�1 (4.36)

satisfy CNLS (2.14).
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Example 4.5. Assume n = 1 (i.e., A1 and A2 are now scalar functions) and a1 �= a2. Then
the recovery of S(x, t) is especially simple. Using (4.10), we obtain

S(x, t) = (A1(x, t) − A2(x, t))−1(�1(x, t)�1(x, t)∗ + �2(x, t)�2(x, t)∗). (4.37)

By (4.3), (4.27) and (4.28) we rewrite (4.37) as

S(x, t) = 1

f (t)(a1 − a2)

(
exp

{
i

2
f (t)

(
2x(a1 − a2) + a2

1 − a2
2

)}
h1k

∗
1

+ exp

{
i

2
f (t)

(
2x(a2 − a1) + a2

2 − a2
1

) }
h2k

∗
2

)
. (4.38)

From (4.13), (4.27) and (4.28) it follows that

v̂1 = − 2i

S(x, t)
exp

{
− i

2
f (t)((x + a1)

2 + (x + a2)
2)

}
k∗

1h2, (4.39)

v̂2 = − 2i

S(x, t)
exp

{
i

2
f (t)((x + a1)

2 + (x + a2)
2)

}
k∗

2h1, (4.40)

where S is given by (4.38).

Now, let us construct GBDT for the KdV-type equation (2.24). We shall construct self-
adjoint solutions. For simplicity we shall also put the initial solution v = 0. (This assumption
is often made, when explicit solutions are constructed.) Partition �1(x, t) into two p × p

blocks: �1 = [�1 �2]. The coefficients in (3.5) and (3.6) for the cases u = x and u = t are
given by equalities (2.19) and (2.21), respectively, after substitution v = 0. In other words,
the first relation in (3.5) can be rewritten as

∂

∂x
�1 = α�2,

∂

∂x
�2 = −�1, (4.41)

∂

∂t
�1 = g(4α2�2 + 2f �1),

∂

∂t
�2 = −g(4α�1 + 2f �2), (4.42)

where α = A1. According to (2.23) formula (3.4) (l = 1) takes the form

αx = f In, αt = 12fgα. (4.43)

Suppose

g(t) = g(t), f (t) = f (t). (4.44)

Taking into account (4.41)–(4.44) it is easy to check, that A2 and �2 given by

�2 = �1J
∗, A2 = α∗, J =

[
0 Ip

−Ip 0

]
, (4.45)

satisfy relation (3.4) (l = 2) and the second relation in (3.5) for u = x and u = t . In view of
(2.23) relations (3.6) take the form

Sx = �2�
∗
2, St = 4g(α�2�

∗
2 + �2�

∗
2α

∗ + �1�
∗
1) − 12fgS. (4.46)

Finally, relations (3.13) take the form

(�∗
2S

−1)x = −
1∑

k=0

q̂k�
∗
2S

−1αk, (�∗
2S

−1)t = 12fg�∗
2S

−1 −
2∑

k=0

Q̂k�
∗
2S

−1αk, (4.47)

where coefficients q̂k and Q̂k are obtained via transformation (3.10). Equality (3.3) can be
written as

α(0, 0)S(0, 0) − S(0, 0)α(0, 0)∗ = �(0, 0)J�(0, 0)∗ � := �1. (4.48)

10
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It yields the identity

α(x, t)S(x, t) − S(x, t)α(x, t)∗ = �(x, t)J�(x, t)∗. (4.49)

Proposition 4.6. Let relations (2.23), (4.41)–(4.44), (4.46) and (4.48) hold, and let det S �= 0.
Put

v̂ = 2
(

12 + 
21 + 
2

22

)
, 
kj := �∗

kS
−1�j . (4.50)

Then, in the points of invertibility of S, the matrix function v̂ is a self-adjoint solution of the
KdV-type equation (2.24).

Proof. Similar to the isospectral KdV case, transformation (3.10) of the coefficients qk and
Qk does not preserve their structure. Therefore we cannot use theorem 3.2 in this proof, and
so we will show that v̂ satisfies (2.24) directly, using (3.13), i.e., formulae (4.47). The GBDT
solution of the isospectral classical KdV equation was treated in detail in [16], section 5.
Relations (4.41) and the first relation in (4.46) coincide with formula (5.6) in [16]. By these
relations we get

∂

∂x

12 = −
12
22 − 
11 + �∗

2α
∗S−1�2,

∂

∂x

21 = −
22
21 − 
11 + �∗

2S
−1α�2,

(4.51)

∂

∂x

22 = −(


2
22 + 
12 + 
21

) = −1

2
v̂,

∂

∂x

2

22 = −1

2
(̂v
22 + 
22̂v), (4.52)

∂

∂x

11 = −
12
21 + �∗

2α
∗S−1�1 + �∗

1S
−1α�2. (4.53)

After proper change of notation, definition (4.50) coincides with formula (5.16) in [16]. Using
relations (4.41), (4.47) and (4.49)–(4.53) similar to [16] we obtain derivatives v̂xx and v̂xxx .
Some additional terms appear as α depends now on x, i.e., αx = f (t)Ip, whereas we had α ≡
const in the isospectral case [16]. In particular, we have

3̂v2 − v̂xx = 8(
21
12 + �∗
2S

−1α�2
22 + 
22�
∗
2α

∗S−1�2

+ �∗
2S

−1α�1 + �∗
1α

∗S−1�2) − 4f 
22, (4.54)

where −4f 
22 is such an additional term (compare with formula (5.31) in [16]). After
differentiation of the right-hand side of (4.54) we obtain

(3̂v2 − v̂xx)x = R1 + R2, (4.55)

where

R1 = 8(�∗
2(α

∗)2S−1�2 + �∗
2S

−1α2�2 − (�∗
1S

−1α�1 + �∗
1α

∗S−1�1 + (�∗
1S

−1α�2

+ �∗
1α

∗S−1�2 + �∗
2S

−1α�1)
22 + �∗
2S

−1α�2
21 + 
12�
∗
2α

∗S−1�2

+ 
11
12 + 
21
11 + 
22(�
∗
2α

∗S−1�1 + �∗
1α

∗S−1�2

+ �∗
2S

−1α�1) + 
22(�
∗
2S

−1α�2
22 + 
22�
∗
2α

∗S−1�2 + 
21
12)

+ (�∗
2S

−1α�2
22 + 
22�
∗
2α

∗S−1�2 + 
21
12)
22)), (4.56)

and R2 is the additional, with respect to the isospectral case, term:

R2 = 16f 
2
22 + 8f (
12 + 
21) − 4f (
22)x.

In view of (4.50) and (4.52) we have

R2 = 8f 
2
22 + 6f v̂. (4.57)
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Now, consider v̂t . By (2.23), (3.10) and (4.45) we get

Q̂2 = Q2, Q̂1 = Q1 − Q2J�∗
1S

−1�1 + J�∗
1S

−1�1Q2,

Q̂0 = Q0 − Q1J�∗
1S

−1�1 + J�∗
1S

−1�1Q1

−Q2J�∗
1α

∗S−1�1 + J�∗
1S

−1α�1Q2 − J�∗
1S

−1�1Q2J�∗
1S

−1�1. (4.58)

From (4.42), the second equality in (4.47), (4.58) and identity (4.49) it follows that

∂

∂t

12 = 4g(�∗

2(α
∗)2S−1�2 − �∗

1S
−1(α�2�

∗
2

+ �2�
∗
2α

∗ + �1�
∗
1)S

−1�2−�∗
1S

−1α�1) + 12gf 
12, (4.59)

∂

∂t

21 = 4g(�∗

2S
−1α2�2 − �∗

2S
−1(α�2�

∗
2

+ �2�
∗
2α

∗ + �1�
∗
1)S

−1�1 − �∗
1α

∗S−1�1) + 12gf 
21, (4.60)

∂

∂t

22 = −4g(�∗

1α
∗S−1�2 + �∗

2S
−1(α�2�

∗
2

+ �2�
∗
2α

∗ + �1�
∗
1)S

−1�2 + �∗
2S

−1α�1) + 8gf 
22. (4.61)

Taking into account (4.50), (4.56) and (4.59)–(4.61) we derive

v̂t = gR1 + 12gf v̂ + 8gf 
2
22. (4.62)

Finally, compare formulae (4.55), (4.57) and (4.62) to get

v̂t − 6gf v̂ = g(3̂v2 − v̂xx)x. �

Remark 4.7. To construct �1 and �2, take into account ft = 12gf 2 and note that the matrix
function α of the form α(x, t) = f (t)(xIn + a), where a is an n × n matrix, satisfies (4.43).
It follows from (2.7) and can also be checked directly that

∂2

∂x∂t
(�s) = ∂2

∂t∂x
(�s) (s = 1, 2).

Thus, systems (4.41) and (4.42) are compatible. Using these systems and expression for α,
we can recover � from the relations[

�1(0, t)

�2(0, t)

]
= exp{β(t)}

[
�1(0, 0)

�2(0, 0)

]
, (4.63)

[
�1(x, t)

�2(x, t)

]
= exp{γ (x, t)}

[
�1(0, t)

�2(0, t)

]
, (4.64)

where

β(t) = 1

3
(f (t) − f (0))

[
0 a2

0 0

]
+ 2

(∫ t

0
g(u)f (u) du

) [
Ip 0
−2a −Ip

]
, (4.65)

γ (x, t) =
[

0 1
2f (t)x(xIp + 2a)

−xIp 0

]
. (4.66)

Function f is recovered from g by the formula f (t) = 1
/(−12∂−1

t g
)
.

12
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Remark 4.8. As α(x, t) = f (t)(xIn + a), we can rewrite (4.49) in the form

aS(x, t) − S(x, t)a∗ = R(x, t), R(x, t) = f (t)−1�(x, t)J�(x, t)∗, (4.67)

� = [�1 �2]. Using (4.67), S(x, t) is recovered from R(x, t) similar to the way, in which
S is recovered from R in remark 4.3.

By proposition 4.6 a class of the self-adjoint solutions of the KdV-type equation (2.24) can be
constructed explicitly up to the inversion of finite matrices.

Corollary 4.9. Fix arbitrary n × n matrix a such that σ(a) ∩ σ(a∗) = ∅. Let matrices
�s(s = 1, 2) be given by (4.63)–(4.66). Use remark 4.8 to recover S from �s(s = 1, 2). Then
the matrix function v̂, which is defined in (4.50) via S and �s(s = 1, 2), satisfies (2.24).

5. Conclusion

Thus, auxiliary systems for matrix nonisospectral equations were introduced, and the GBDT
version of the Bäcklund–Darboux transformation was applied. It proved fruitful for the
construction of the explicit solutions of the nonisospectral equations, including matrix
equations and equations with variable coefficients. In our next work we plan to consider
examples with non-diagonal parameter matrices A(x, t) in greater detail.

A comparison of the isospectral and nonisospectral solutions could be fruitful. Note that
equality (4.13) for the solution of the nonisospectral CNLS formally coincides with equality
(3.13) [29] for the solution of the isospectral CNLS, and equality (4.50) for the solution of
the nonisospectral KdV formally coincides with the equality (5.4) [16] for the solution of the
isospectral KdV. However, the dependence on x and t and asymptotic behavior of the terms
on the right-hand sides of the equality (4.13) in our paper and (3.13) in [29] is quite different.
The same is true for the right-hand sides of (4.50) and (5.4) [16]. In particular, assume that
	b < 0, k1 �= 0, h2 �= 0 in example 4.5. Then we have

lim
|x|→∞

‖̂v1(x, t)‖ = ∞, lim
|x|→∞

‖̂v2(x, t)‖ = 0.

Nevertheless, an asymmetric soliton was found [4] in the limit t → ∞ for a solution of
the Maxwell–Bloch system with damping. Such analogies are of special interest and we are
planning to look for them in our next work. Finally, note that the poles of the Darboux matrix
wA of the form (3.8) are defined by the equality det(A1 − λIn) = 0. In the isospectral case
the corresponding values of the spectral parameter do not depend on x and t. In view of (2.13)
and (4.3) we see that for the nonisospectral CNLS (2.14) the equality det(A1 − λIn) = 0 is
equivalent to the equality det(a1 − cIn) = 0. Here we can talk about the poles of the Darboux
matrix with respect to the ‘hidden’ spectral parameter treated in [5].
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[35] Sulem C and Sulem P 1999 The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse (Applied

Mathematical Sciences vol 139) (New York, NY: Springer)
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